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ABSTRACT — The characteristics of a gaussian monochromatic light beam incident at the critical
angle of incidence on a dielectric interface are investigated using the Beam Propagation Method
(BPM). The main features relevant to the total internal reflection of spatially-bounded light beams
are thoroughly investigated and discussed. Some previously unexamined phenomena: standing
waves resulting from the interference of the incident and reflected beams, as well as the angular
spread of the refracted beam in the rarer medium and its direction of propagation are considered.
The lateral field and the Goos-Hdnchen shift are also investigated and the results obtained by the
BPM are in agreement with those obtained by other more involved numerical methods.

INTRODUCTION

The phenomenon of total reflection of
gaussian light beams is of significant
importance in the field of integrated optics
and fiber-based communication systems,
because such beams represent well the
dominant mode of a single-mode fiber and
laser diodes and oscillators. It is worthy to
point out that most of the guidance
phenomena rely on total reflection at a
dielectric interface, and actually guided fields
are spatially-bounded. Despite of this fact,
most of the analytical methods used in the
analytical methods used in the analysis of
guided-wave phenomena assume guided
plane waves rather than the more realistic
spatially-bounded fields. This reflects the
need of simple, powerful and versatile method
in the analysis of the guidance phenomena of
such fields. There are three main features
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relevant to the process of total reflection at
critical incidence: the lateral displacement
( Goos-Hinchen shift ) of the reflected and
transmitted beams from the position predicted
by geometrical optics [1]. the penetration of
energy in the less dense medium where the
field is basically evanescent and the lateral
field which extends well beyond the reflected
and transmitted fields [1,2].  Pioneering
research papers [3-6] were concerned with
well collimated beams where the quotient :
“beam waist/wavelength” varies from 100 to
10*. Unfortunately, this, condition is not met
in the majority of single-mode integrated-
optical  compouents  and  fiber-based
communication systems. Nevertheless in
Antar’s paper [1] the smallest value of the
(beam waist/wavelength) was equal to 10 ;
which is a quite reasonable value from the
practical point of view. The analytical method
used by Antar is involved because the



electromagnetic field is expressed in terms of
a complex integral which can be evaluated
approximately in terms of an infinite series
involving parabolic cylinder functions (each
one of them is calculated by an infinite
series). Despite of the complexity of Antar’s
method. no closed form analytic expressions
(even approximate) for the Goos-Hénchen
shift. or the lateral field, or the refracted field
in the rarer medium could be obtained.

An approach based on an angular spectrum
representation of the electromagnetic field
had been proposed by McGuirck et. al.[7] but
it did not lead to any numerical application.
Obviously, a simple and powerful analytical
method leading to a simple numerical
implementation would be of great advantage
and benefit.

We believe that the BPM [8.9], is to our
knowledge, the most powerful method relying
on the angular spectrum representation of the
electromagnetic field and has the simplicity
and powerfulness we seek at both levels:
analytical and numerical. This is justified by
the very wide class of problems which had
been handled by that method [10-18]: the
fundamental characteristics of optical fibers,
waveguide modulators and couplers, bent
waveguides, nonlinear effects in fibers,
solitons and propagation in anisotropic media.

In this paper we present, for the first time to
our knowledge, an analysis by the BPM of the
phenomenon of total reflection of a gaussian
light beam incident on a dielectric interface at
the critical angle of incidence because at that
angle. the main relevant features [1,2] of the
phenomenon of total reflection are strongly
manifested: the diffraction effects of the
lateral ficld. the refraction of some energy in
the rarer medium and the Goos-Hénchen shift.
It is worthy to point out that some analytical
and numerical methods are invalid at the
critical angle of incidence; so we think that it
is a good opportunity to test the validity and
the powerfulness of the BPM at that angle of
incidence. Because the literature on the BPM
is so extensive, a brief review of the method
as well as some numerical precautions are

presented in an appendix at the end of the
paper.

2- FORMULATION OF THE
PROBLEM AND THE ESSENCE
OF THE BPM

As shown in figure 1, the plane x=0 is the
interface between two dielectric media having
refractive indices n, and n; respectively; with
n; > np. The geometry of the problem is
invariant with respect to the y-coordinate. In
the plane y=0 and at x=xq4 a monochromatic
gaussian light beam at the free-space
wavelength A, propagates towards the
interface.
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Fig. 1: Gaussian beam incident on a plane
dielectric interface.

The beam’s axis makes an angle 8; with
respect to the z-axis, this corresponds to the
critical angle of incidence 8.~ sin’ {ni/m)
measured with respect to the normal to the
interface. Zy, is the point of intersection of the
beam’s axis with the z-axis. This is the point
of total reflection predicted by geometrical
optics. The beam width at the waist is 2W
( where W is half of the total 1/e width). The
time dependence is assumed exp(-iot), where
“i” is the imaginary unity. The electric field of
the gaussian beam is y-polarized and hence,
in the incident-beam coordinate system (X;,zi),
can be writen as:

Eyi(xi,zi) = exp - (xi/W) . exp(ikiz) (1)

Where k;= kon; is the wavenumber in the
denser medium (i.e. in x>0) and k, is the free-



spacc wavenumber. In the interface-
coordinate system (x.z) and at z=0, the
gaussian distribution in (1) can be written as:

Ey (x,0) = exp —[(x-Xq) . cOS 0, /’W]2 ;

exp [(ik; (x —Xq) sin 6; | (2)

The BPM, first introduced by Fleck et. al.[8],
relies on the expansion of Ey(x,0) as a
continuous spectrum of plane waves (i.e. a
spatial Fourier transform). Each component of
the spectrum is made to propagate for a small
step Az in a homogeneous (reference)
medium having a refractive index n, where
n < n, < ny. Then, Fourier-inverting the
propagated spectrum we recover the field at
7z = Az, ie. E(x, Az). Finally, to take into
account for the deviation dn(x) of the actual
refractive index distribution n(x) from the
reference value n, we correct the phase of
E, (x. Az) through  multiplication by
explike, dn(x).Az] to obtain the field Ey(x, Az)
at z =Az. This procedure is summarized as
follows:

a- Calculate: F{ E(x.0) }, where “F ™ stands
for the  Fourier transform operation.

b- Multiply F{ E,(x.0) } by the propagator
operator P.

¢- Calculate F ™' ( the inverse Fourier
‘transform ) of the propagated spectrum
obtained in step (b) to recover the
uncorrected field E’y(x, Az) .

d- Calculate Q{f E’y(x, Az) }. where Q
stands for the phase correction operator,
to obtain finally Ey(x, Az).

This step-by-step propagation process is
continued to any desired distance z. An
inherent limitation in the BPM is that any
“back-reflected” field (i.c. in the negative z
direction) is ignored. Fortunately, in our
problem there is no back-reflection from the
dielectric interface; only “side-reflection” (i.e.
towards the positive x-direction).

3- WAVE SPECIES AT A
DIELECTRIC INTERFACE

The different wave species that can exist at a
diclectric interface are best illustrated in
figure 2, where three situations are possible:

a- A ray BO incident at anangle less than
the critical one, gives rise to a reflected ray
OB, and a refracted ray OB obeying
Snell’s law.

b- A ray AO incident at the critical angle
produces a reflected ray OA, and a lateral
ray [1] OA; which propagates parallel to
the interface x=0 and just below it in the
less dense medium.

¢- Aray CO incident at an angle greater than
the critical one giving rise to a totally
reflected ray OC; and a lateral ray OCi.

The wave species are useful in a qualitative
understanding of our problem: a gaussian
field can be represented as an angular
spectrum of plane waves. Each component in
the spectrum corresponds to one of the wave
species mentioned above. So, the central
component in the spectrum of a beam incident
at the critical angle corresponds to the ray
AQ. For the rest of the components:

1- Half of them are incident at angles less than
the critical one; a situation corresponding
to rays like OB. These rays contribute to a
refracted field in the less dense medium as
well as to the reflected field.
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Fig. 2 : Wave species at a plane dielectric
interface.



2-The other half are incident at angles greater
than the critical one; these correspond to
rays like CO. and hence they contribute
significantly to the lateral field [1,2] as
well as to the reflected field. The lateral
field exhibits diffraction effects [1-3]
because it extends in the positive z-
direction well beyond the point of total
reflection Z,, predicted by the geometrical
optics. Its amplitude is very weak
compared to other wave sjpecies [1-3] and
decreases with z as (z-z) "2 and hence its
observation is difficult as pointed out by
Antar [1]. Nevertheless, its presence was
verified  experimentally by many
investigators cited in Tamir et.al.[2].

4 - RESULTS AND DISCUSSIONS

For the purpose of comparison, we consider a
gaussian beam having the same opto-
geometric properties as that one considered
by Antar [1] : W=10 A, where L, is the
wavelength in the denser medium, ie. A=
A o/npand A ,=1.55 um, x4~3W, n;=1.94 and
n,=1. The beam’s axis makes an angle 8; with
respect to the z-axis which corresponds to the
critical angle of incidence 8, = sin”'(1/1.94) ~
319, ie. 0,=(n/2) - B, =59°. The spatial Fourier
spectrum of the initial field (2) is also
gaussian [2.3] :

E(k.0)=(1/ cos 8; ).exp-[ W(ky- ky;)/2cos 8; ]2.
exp-( 1 (ket kyi) xa]  (3)

The physical meaning of the spatial spectrum
is obvious [19] : the initial gaussian beam can
be viewed as a bundle of plane waves
propagating at angles centered around 6; . The
variable of the transform k is the x-projection
of the wave vector of a representative plane
wave component in the spectrum (3) making
an angle 0 with respect to the z-axis (the
direction of propagation). Similarly, ky;is the
transverse wavenumber correspon- ding to a
spatial spectral component at the angle 0;
(the direction of the beam’s axis). Evidently,
kg = k; sin 0, =6.74 um™ and k, =k; sin 0.
FFrom (3). we see that the spectral width, i.e.
the total 1/e width of the spatial spectrum of
the initial field is Ak, = 4 cos 8, / W =

-

0.26 um™' . and the spectrum is symmetrically
centered around the spectral component ky;.
Each plane wave component in the spectrum
has a z-dependence of the form exp(ik,z),
where the longitudinal wavenumber k,
follows from the dispersion relation [19] :

k,=(k? - kZ)'"7? (4)

For k< k., the representative plane wave
component is propagating at an angle
tan” (ky/k,) with respect to the z-axis. While
for ke > k; the representative component is
evanescent in the z-direction, ie. its z-
dependence is of the form exp(-k.z).
Although the evanescent part of the spectrum
decays with Z (i.e. it is non propagating), its
presence is very important because it
describes the fine spatial details of the total
propagating field.

Now, we present the results of the
calculations and discuss the main features of
the total reflection phenomenon:

A -  The total propagating field and the

standing wave pattern

In figure 3, the total field E,(x.z) is plotted at
different constant-z planes. The total
propagated distance is Zi= 100 um and the
propagation step Az = 0.1 pm. The choice of
the step size Az follows from the criterion [9]:

| Amax | (AZ/ Ao) Sin” Oy << 1 (5)

Where Anpay is the maximum deviation of the
actual refractive index n(x) from the reference
value n, and Ona i1s the angle between the
direction of the highest significant component
in the spatial spectrum of the total
propagating field and the z-axis. From (3), a
good estimation for the highest significant
value of the transverse wavenumber k, is
ky max = 0.5 Ak,i= 6.87 p.J.m'l , and hence
Bmax 1S equal to sin™ (ke max/k1) = 61° , i.c. the
total anguiar spread A 8; of the initial gaussian
beam around the direction of the beam axis is
2 (Bmax - 0i) =4°.



Total Field at different Z

.20 0 40 ao aro
Distance X (in microns)

Fig. 3: Total propagating field due to a
gaussian beam incident on a dielectric
interface at the critical angle.

The dark area ( for x>0) shown in figure 3 is
the region of interference between the
incident and the reflected fields which results
in a standing wave pattern.

Figure 4 represents an expanded view of that
area: the distance between two successive
maxima (or minima) is nearly equal to the
expected value A/2 =4 /2n; = 0.4 pm.
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Fig. 4: Standing wave effect in the denser
medium n; .

B — The transmitted field in the rarer
medium and the reflected field

In the region x<0, a peaked field propagates
away from the interface x = 0. Figure 5 shows
an expanded view of that field which
corresponds to the plane wave components in
the spectrum of the initial field at angles of
incidence less than 6. and hence they refract
in the rarer medium.

To emphasize this result, we refer to figure 6
which represents the spatial spectrum of the
total field at the end of the propagation where
two peaks are present :

1-  The first one pertaining to the transmitted
field in the rarer medium occurs at kg =
1.23 pm’' which corresponds to an angle of
refraction in the rarer medium equal to 6; =
sin(1.23/konz) = 17.7° with respect to the z-
axis, i.e. 72.3° with respect to the normal to
the interface. From Snell’s law, that angle
corresponds to an angle of incidence in the
denser medium equal to sin” [(ny/ny) sin72.3°]
= 29.4° < @, . this explains the refraction in
the less dense medium. Assuming that the
transmitted field is also gaussian, the highest
significant ~ value of the transverse
wavenumber in its spectrum corresponding to
half its 1/e width is kg max= 2.1 pm’'; this
corresponds to an angle 0 max™ 31.2° with
respect to the z-axis, i.e. 58.8° with respect to
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Fig. 5: Total transmitted field in the less
dense medium n; .



the normal to the interface. The angular
spread of the transmitted field in the rarer
medium is therefore A8, = 2(8 max- 6 =27°.
and this corresponds to a spectral width Aky
= 20 ki wiani = ki )= 1074 ;,Lm". If the angular
spread per unit spectral width of the initial
and transmitted fields are equal, then our
assumption on the gaussian shape of the
initial field is justified. Direct evaluation of
these ratios vields: (A®;/Akyi )= 15.4 degree
per um”' and (A8, /Aky ) = 15.5 degree per
um’. The negligible difference between
these ratios is due to the fact that the
transmitted field is not exactly gaussian as
can be seen from figure 6 which shows that
the spectrum of that field is not exactly
symmetrical around Ky;.

2- The second peak in the spectrum shown in
figure 6. corresponds to the direction of the
reflected beam ( with respect to the z-axis ). It
oceurs at ky= -6.74 um’™", which is numerically
equal to the transverse wavenumber
corresponding to the direction of the axis of
the incident gaussian beam. The negative sign
means that the incident and reflected beams
propagate in opposite directions with respect
to the x-axis (the direction of the transverse
wavenumber ky, which is the variable of the
spatial Fourier transform). This verifies the
equality of the angle of incidence and
reflection.
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Amplitude of the Spatial Fourier Transform
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Fig.6: Spatial spectrum of the total field at
the end of the propagation distance Z .
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C- The lateral field

The lateral field [1,2] exists at a plane

interface when plane waves are incident from
the denser medium at angles 8 = 6
Analytically, this field can be evaluated
through a branch singularity [1,7] in the
integral representation of the total field. The
lateral field amplitude is strongest when the
angle of incidence is 8¢ ( but it is weak
compared to other wave species) and
proceeds just below the interface in the rarer
medium parallel to the z-axis. The lateral field
leaks energy at every pointalong the z-axis
back to the denser medium. Its amplitude fans
out gradually as (z—zg(,)'y2 and thus occupies a
very wide region well beyond zy, . Figure 7
represents a plot of the “total” transmitted
field along the interface x=0 as function of of
the normalized propagation distance (z'/w) =
(z-zg)/w. The vertical scale is a log-scale,
because the very small amplitude of the
lateral field contributing to the total field will
not be appreciable on a linear scale.

D - The Goos -Hinchen shift

Figure 8 shows the variation of the total field
along the interface x =0 as function of the
normalized distance z'/w. The peak of the
field is shifted to the right of the point 2’=0 by
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Fig. 7. Total transmitted field in the rarer
medium along the interface x = 0, and
the behaviour of the lateral field.



an amount equal to 0.244W. Antar [1] found a
lateral shift equal to 0.25W: the two values
are in good agreement.
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Fig.8: Lateral shift of the total field from the
normalized point of incidence Z’/W=0,
which corresponds to Z = Zy, .

E- The evanescent character of the

transmitted field

A plot of the peak value of the total
transmitted field in the rarer medium as
function of the normalized penetration depth
x /Ay is shown in figure 9. The peak value
decreases with increasing x/ A;. This behavior
was pointed out by Antar [l], but no
analytical expression governing  the
evanescence character of the field is available
so far. Obviously, there is no reason to expect
a simple decay law (for example exponential)
of the evanescent field in the rarer medium.

5- CONCLUSIONS

The fundamental characteristics of the total
field due to a gaussian beam incident at the
critical angle on a dielectric interface are
studied using the BPM. It is found that the
lateral field varies with Z as Z*% . The value
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Fig. 9: Evanescent character of the
transmitted field in the rarer
medium n; .

of the Goos-Hinchen shift obtained by the
BPM agrees well with that one obtained by
other more involved methods. The standing
wave character of the total field in the denser
medium is examined and the spatial period of
the standing wave pattern is verified. An
interesting feature is investigated and verified:
the transmitted field in the less dense medium
comes from that part of the spatial spectrum
of the initial propagating field which does not
satisfy the condition of total reflection. The
peak of the transmitted field is basically
evanescent in the direction normal to the
interface towards the rarer medium. A
noteworthy result is: the shape of the
transmitted field is quasi-gaussian and the
ratio “angular spread/spectral width” is
conserved for both; the initial and transmitted
beams.
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APPENDIX

The problem under consideration is invariant
with respect to the y-coordinate, consequently

&/

0 y2 = (0 and hence the scalar wave

equation for E, takes the form :

[ ox*+ 07 +ko n’(x)] Ey=0 (Al)



Where n(x) is the refractive index distribution
which is function of the transverse coordinate
‘x". Equation (A1) can be written as:

FEJOZ=-[V? +k 0’ (X) |Ey =0 (A2)

Where V. is the transverse laplacian &%/0 x°.
The coefficient of Ey in the right-hand side of
(A2) is an operator which depends only on the
transverse coordinate ‘x’ (transverse to the
direction of propagation ‘Z’) and hence, a
formal operator solution [21] of (A2) for the
forward propagating field at z=Az in terms of
its value at z=0 is :

Ey(x. Az) = {exp (1 Az.R)} . Ey(x,0) (A3)

Where a time dependence exp(-iot) 18
assumed and R is the operator:

R=[VZ+k: 0’ (x)]" (Ad)

If n(x) is denoted shortly by ‘n’,then the
operator R can be written as:

lz: [ Vl?_ =5 k{)l nl]lf‘z
= (VI [ (VE +kot 02 )2 + ken]} + kon (AS)

[f ‘n” in the denominator of the first term in
the right-hand side of (AS5) isreplaced by a
certain reference value n, where n:<n, <n
then the last equation can be written as:

[V12 + knl nl]”l - {V‘Z/ [ (th + k2 )U2+ k]}
+k +k [(n/no) -1] (A6)

Where k=k,n, . The approximation in (A6) is
valid if the maximum deviation Anpu(x) of
n(x) from the reference value n, satisfies the
following criterion [9]:

| Al | (AZ/ ho) 8N Bmax << 1 (A7)

Where 0.« 1s the angle between the direction
of the highest significant plane wave
component in the spatial spectrum of the total
propagating field and the z-axis. If Ey(x.z) is
written as:

E,(x.z)=e,(x;z) . exp(ikz) (A8)

Then, apart from a constant phase factor
exp(ikAz), direct substitution from (A8) into
(A3) gives:

e,(x, Az)={exp[iAz (S+k, 6n )]}.e,(x,0) (A9)

Where 6n= n(x) —n, and e,(x,0) is the initial
field distribution at z=0 (given by eq.(2)). The
operator S is defined as:

S= VY[ (VE+K)"+ K] (A10)

The exponent in the right-hand side of (A9) is
in fact the product of two operators:

[exp(iAz S)].[exp (i Az ko 6m)] (All)

These operators do not commute [21], and
hence an approximation is indispensable to
evaluate the right-hand side of (A9). It can be
shown [21] that to second order in Az,
equation (A9) can be written in a symmetric
split-operator [21] form as:

ey(x, AZ)={P.Q.P }.e,(x,0) + O(Az)’ (A12)

Where O(Az}‘i is a negligible term of the
order of (Az)” and P and Q are the two
operators:

P=exp|i(Az/2)S] (A13)
and :

Q =exp (1Az k,06n) (A14)

The operation { P }.ey(x.0) represents the
propagation of the initial field ey (x,0) fora
distance equal to half the step size Az/2 ina
homogeneous medium having a constant
refractive index n, . i.e. it is equivalent to
solving the Helmholtz wave equation :

[ 0x* + &/87° +K'] E,=0 (Al5)

with Ey(x,0) as an initial condition at z=0.
Therefore, advancing E(x,0) by repeated
application of (A12) allows us to obtain the
total propagating field E,(x,z) at any distance
z once the initial field is known. The
operation { P } . ey(x,0) is easily performed in
Fourier space [9] because the spatial Fourier
transform of {P}.e((x,0) can be written
as [9,19,20]:



F{P.ey(x.0) }=W¥(k.0).exp { (1Az/2) x
k(K=K +k1 (A16)

Where ¥(ky.0) is the spatial Fourier transform
of the initial field e,(x.0), i.e.:

oD
Pika0) = ey(x.0).exp(-ikex)dx (Al7)

=0

Thus. advancing the initial field for a distance
equal to half of the propagation step Az/2 by
performing {P} . e,(x,0) in Fourier space
(via (Al16)). then returning back to the
ordinary (x.z) plane by Fourier inversion. To
take into account for the deviation of the
actual refractive index distribution n(x) from
the reference value n, we multiply the
propagated field by the correcting operator
Q, then performing again the propagation
process over the other half propagation step
Az/2. So. repeated application of these
processes allows us to calculate the total
propagated field at any distance z. The
Fourier transform is calculated numerically
from the sampled field values at “N” discrete

points X Where m=12....... N, te. a
‘Discrete  Fourier Transform™ [20] (DFT)
which is calculated by the Fast Fourier
Transform algorithm (20] (EFT).

Accordingly. the discrete version of (A17) is
written as [20]:

N/2
W(kn0) = £ ey(j Ax.0).exp(- i ki j AX) (A18)
j=-(N2)+ 1

Where the spacing Ax between the sampled
values of the field is calculated from :

Ax = L/N (A19)
‘" being the length of the computational
region along the x-axis. The variable of the
DFT ( the transverse wavenumber) Kp is
given by :

Kn =2 mm/L (A20)
From (A19) and (A20), we can write (A18)
as:

0™

N/2
W(km,0) = Zey(j Ax,0) .exp(-i 2rmj/N) (A21)
§=(N/2)+1

The propagation process between z =0 and
z = Az can be summarized as follows:

1- Calculate the initial spectrum ¥ (kp, 0)
from the sampled values e,(j Ax,0) at *N*
discrete points using the FFT algorithm.

2- Propagating the initial spectrum over half
the step Az /2 in the Fourier domain using
(A16).

3- Fourier inverting the propagated spectrum
using the inverse FFT algorithm to
recover the uncorrected field after a half
step.

4- Perform the phase correction by
multiplying the uncorrected field by the
operator Q.

5- Repeating the propagation step over the
other half step Az/2 as described in 1 and
2 to obtain finally the field at z = Az

The previous scheme is repeated until we
reach the desired propagation distance Zo. A
crucial question regarding the spatial
sampling interval Ax: how to choose it?

From the sampling theory we know that as Ax
decreases, the resolution (i.e. the ability to
capture the fine details) of the spatial Fourier
spectrum increases. Consequently, the high
spatial frequencies in the spectrum can be
“viewed”, i.e. the fine variations of the field
are considered. The spectrum of the incident
field is centered around ky= k;sin 6;, and its
maximum significant width is A kg =
4 cos /W, and hence the maximum spectral
deviation from ky; is +2cos 8;/W. From (A20),
the maximum value of the transverse
wavenumber Kynax in the DFT corresponds to
m=N/2, and from (A19) we have:

Kymax = W/AX (A22)
Taking into account for the maximum
deviation of k., from k, , an acceptable
estimate for the maximum value of the

transverse wavenumber is: Kymax = Kxi F
(2cos 8;/W). From (A22), we deduce :



(t/ A x)= kgt (2cos 8/W) (A23)

This means that the sampling interval Ax
should not exceed m/[ky + (2 cos 6; /W)],
otherwise the high spatial frequencies in the
spectrum would not be “viewed”, i.e. the
“fine details” of the field would be lost. Thus
an acceptable upper limit on the sampling
interval Ax is:

Thus, the actual sampling interval A x must
be less than A Xpax. for example 0.5to 0.25
that value. Finally, it is worthy to point out
that the propagating field which reaches the
boundary of the computational window of
width “L”, will be reflected back and appears
as a fictitious field reflected from the
boundary of that window and cause aliasing
[8-10]. To prevent this numerical problem, an
“absorber” is placed near the edges of the
computational window [8-10,20]. A wide
variety of absorbers exist. We used
“Hanning™ truncation function as an absorber,
it is defined as [20]:

Ax)=0.5{1-—cos[2n(x—=xg)/L]} (A25)
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